Chapter 10 Natural Resources and the Environment

INTRODUCTION

This component of the Cherry County Comprehensive Plan provides a general summary of the environmental and man-made conditions, which are present in the county, and identifies and qualifies the characteristics of each which will directly or indirectly impact future land uses in the county. Much of the information referenced is from the Cherry County Soil Survey conducted by the United States Department of Agriculture – Soil Conservation Service in 2005.

The issues discussed in this chapter include:

- Climate
- Geology
- Relief and Drainage
- Wetlands
- Soil Association
- Prime Farmland
- Soil Limitations

NATURAL CONDITIONS

Climate

The climate in Cherry County is characterized by cold winters and long, hot summers. Heavy rains occur mainly in spring and early summer when moist air from the Gulf of Mexico interacts with the drier continental air. Snowfall is fairly frequent in winter, but the snow cover is usually not continuous. The annual precipitation normally is adequate for wheat, rye, and range grasses. In winter, the average temperature is 22.3 degrees F and the average daily minimum temperature is 9.3 degrees. The lowest temperature on record, which occurred at Valentine on December 22, 1989, was -39 degrees. In summer, the average temperature is 71.6 degrees and the average daily maximum temperature is 85.8 degrees. The highest temperature, which occurred at Valentine on July 2, 1990, was 114 degrees.

The average annual precipitation is about 18.24 inches. Of this total, about 12.9 inches, or 71 percent, usually falls in May through September. The growing season for most crops falls within this period. The heaviest 1-day rainfall on record was 3.76 inches at Valentine on May 29, 1949. Thunderstorms occur on about 46 days each year, and most occur between May and August.

The average seasonal snowfall is 34.1 inches. The greatest snow depth at any one time during the period of record was 22 inches, recorded on December 28, 1987. On the average, 55 days per year have at least 1 inch of snow on the ground. The heaviest 1-day snowfall on record was 18.4 inches, recorded on September 28, 1985.

The average relative humidity in midafternoon is about 48 percent. Humidity is higher at night, and the average at dawn is about 77 percent. The sun shines 74 percent of the time possible in summer and 62 percent in winter. The prevailing wind is from the south during the summer and fall and from the north and west during the rest of the year. Average windspeed is highest, about 10 to 11 miles per hour, from March to May.

Geology and Groundwater

The oldest exposed rocks in Cherry County occur in the eastern Niobrara River Valley and consist of brownish to pinkish, pale orange siltstone and silty sandstone. They have been correlated by some geologists with the Rosebud Formation of South Dakota and by others with the upper part of the Brule Formation. These strata are composed predominantly of volcanically derived grains (glass shards and crystals) and were for the most part deposited by the wind. They are upper Oligocene in age (Swinehart and others, 1985).

Overlying the Brule/Rosebud Formation in a few scattered exposures along the central and western Niobrara River Valley are fine grained, silty sandstones of the Arikaree Group. These sandstones contain a lower percentage of glass shards than the Brule or Rosebud Formation and are upper Oligocene to lower Miocene in age.

Sand, sandstone, and siltstone of the Ogallala Group overlie the Brule/Rosebud Formation and Arikaree rocks along the Niobrara River Valley and elsewhere in the county. The outcroppings of the Ogallala sediments have been subdivided into two formations—the Valentine Formation and the overlying Ash Hollow Formation. Subsurface correlation of these units has been difficult. Both formations were deposited by streams in a complex set of valleys locally cut deep into underlying strata. A widespread calcium-carbonate-cemented unit, the "Cap Rock," occurs at the base of the Ash Hollow Formation. Several discrete beds of volcanic ash occur in the Ash Hollow Formation. The Ogallala Group beneath the Sandhills in the southern half of the county is fairly uniform fine and medium sand and lesser amounts of siltstone and coarse sand and gravel (Swinehart and Diffendal, 1990). The Ogallala Group is famous for its accumulation of fossil vertebrates. It is middle to upper Miocene in age.

A few exposures of Pliocene river-deposited sand and gravel occur in southeastern Cherry County. These have been correlated with the Broadwater Formation of Morrill County. Pleistocene alluvial gravel, sand, and silt are present locally along the Niobrara River Valley. The majority of Cherry County is covered by the fine and medium sand of the Nebraska Sandhills. Recent research indicates that the present dunes were formed during two or more periods of aridity and dune movement in the last 8,000 years (Ahlbrandt and others, 1983). In some interdunes, peat and windblown sand are interbedded to a depth of 25 feet (Loope and others, 1995).

The Ogallala Group of the High Plains Aquifer is the main source of around water in the county (Cronic and others, 1956). Almost all of the water for public and domestic use and much of the water for livestock is obtained from wells. Very little water can be obtained from the Brule/ Rosebud sediments. The Arikaree Group would constitute a source if it were more extensive. The depth to water in areas of the Sandhills varies according to dune height and is generally less than 50 feet in interdune areas. In the tableland areas of the county, water depths generally range from 100 to 200 feet. The saturated thickness of the High Plains Aquifer is typically 300 to 500 feet in the southern half of the county and 100 to 300 feet in the northern half. Water is generally of good quality throughout the county. Total dissolved solids are typically less than 200 milligrams per liter, but higher concentrations are in the northeastern and northwestern parts of the county. Relatively few center-pivot irrigation systems have been installed.

Physiography, Relief, and Drainage

Cherry County is in the northern High Plains of the Great Plains physiographic province. More than 90 percent of the county is covered by sand dunes and interdunes of the prairie-covered Nebraska Sandhills, which make up about 20,000 square miles (Swinehart, 1990). The Niobrara River Valley, extending from west to east across the northern part of the county, and tablelands in the northeast corner and the extreme west-central parts of the county make up the other major landforms.

The Nebraska Sandhills is by far the largest sand dune area in North America. The sand dunes in Cherry County average about 150 to 250 feet high, 2 to 10 miles long, and one-half mile to 2 miles wide. These large dunes typically have steep south to southeastern-facing slopes and rolling backslopes. They are separated from each other by nearly level to gently sloping interdunes. Certain areas of the Sandhills have many shallow lakes and interdunal wetlands. Some of the lakes and the interdunes surrounding them are moderately alkaline or strongly alkaline. Many interdunes have small streams, but drainage networks are poorly developed because the sandy soils allow little runoff. The Snake River, Minnechaduza Creek, and all other tributaries of the Niobrara River and the

forks of the Middle Loup River all flow in valleys cut 50 to 200 feet below the level of the interdunes. The North Loup River and its tributaries flow east and southeast. They drain much of the southeastern part of the county, and their valleys are not cut so deeply.

The Niobrara River Valley has been entrenched 150 to 350 feet, and the valley sides are steep and very steep. Sandy alluvial bottom land makes up only a small part of the valley. The valley is steepest in western Cherry County, where a 10-mile region of incised meanders has formed. Remnants of a prominent high terrace underlain by deep, loamy and sandy soils occur along portions of the Niobrara River Valley. Rivers and streams within the county have quite constant flows because they are fed primarily by ground water and receive little runoff. The high tablelands in the northeastern and extreme west central parts of the county are underlain by sandstone and are capped by loamy and sandy soils. These tablelands are among the few areas that contribute significant runoff to streams and rivers.

WETLANDS

Wetlands are areas where water covers the soil, or is present either at or near the surface of the soil all year or for varying periods during the year, including during the growing season. Water saturation (hydrology) largely determines the soil development and the types of plant and animal communities living in and on the soil.

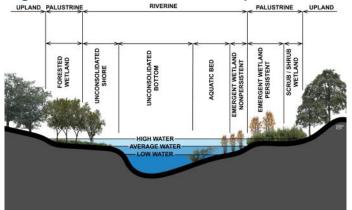
Wetlands may support both aquatic and terrestrial species. The prolonged presence of water creates conditions favoring the growth of specially adapted plants (hydrophytes) and promote the development of characteristic wetland (hydric) soils. Wetlands vary widely because of regional and local differences in soils, topography, climate, hydrology, water chemistry, vegetation, and other factors, including human disturbance. Two general categories of wetlands are recognized: coastal or tidal wetlands and inland or non-tidal wetlands.

Inland wetlands spread across the entire county in the form of Freshwater Emergent Wetlands and Freshwater Forested/Shrub Wetlands. Inland wetlands include marshes and wet meadows dominated by herbaceous plants, swamps dominated by shrubs, and wooded swamps dominated by trees.

Many of these wetlands are seasonal (dry one or more seasons every year). The quantity of water present and the timing of its presence in part determine the functions of a wetland and its role in the environment. Wetlands can appear dry, at times, for significant parts of the year - such as vernal pools - and still provide habitat for wildlife adapted to breeding exclusively in these areas.

The federal government can regulate some wetlands under the Clean Water Act, depending on how "navigable waters" is defined. The Act gives the federal government the ability to regulate navigable waters, and the definition of this has been expanded and limited several times by courts and administrations, making what qualifies as wetlands as clear as mud.

What is clear, however, is that some of the measures used to protect wetlands, such as the Natural Resource Conservation Agencies wetlands reserve easement program, have significantly devalued the land. The Department of Revenue has found that wetland reserve easements has reduce the property value in some Nebraska counties by 40 percent.


Because wetlands play an important role in the ecology of Cherry County, the county supports continued state oversight of these waters, and opposes federal overreach into the long-term conservation of these resources. Wetlands are home to many species of wildlife, and provide an important service to nearby areas by holding and retaining floodwaters. These waters are then slowly released as surface water, or are used to recharge groundwater supplies. Wetlands also help regulate stream flows during dry periods. The counties policies must be coordinated with all entities attempting to regulate wetlands within the counties jurisdiction to ensure these important functions are properly considered.

The U.S. Fish and Wildlife Service (FWS) tracks the characteristics, extent, and status of the Nation's wetlands and deep-water habitats. This information has been compiled and organized into the National Wetlands Inventory (NWI).

According to this database, Cherry County has the three wetland systems of estuarine, riverine, and lacustrine. The majority of the wetlands in the county occur, mostly along the Niobrara River and as meadow areas (mostly around the Wood Lake are). However, there are smaller wetland pockets scattered throughout Cherry County.

Figures 10.1, 10.2, and 10.3 depict common examples of the riverine, lacustrine, and palustrine wetlands, respectively. Figure 10.4 shows the occurrence of wetlands in Cherry County. These figures were produced by the United States Fish and Wildlife Service, and are taken from their 1979 publication entitled "Classification of Wetlands and Deepwater Habitats of the United States", some enhancement was completed in order to place accents on key areas.

Figure 10.1: Riverine Wetland System

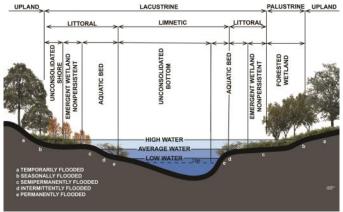

Source: National Wetlands Inventory

Figure 10.1 shows the riverine system includes all wetlands occurring in channels, with two exceptions: (1) wetlands dominated by trees, shrubs, persistent emergent, emergent mosses, or lichens, and (2) habitats with water containing ocean derived salts in excess of 0.5%. A channel is an open conduit either naturally or artificially created which periodically or continuously contains moving water, or which forms a connecting link between two bodies of standing water. Therefore, water is usually, but not always, flowing in the riverine system.

Springs discharging into a channel are also part of the riverine system. Uplands and palustrine wetlands may occur in the channel, but are not included in the riverine system. Palustrine Moss-Lichen Wetlands, Emergent Wetlands, Scrub-Shrub Wetlands, and Forested Wetlands may occur adjacent to the riverine system, often in a floodplain.

The Lacustrine System includes wetlands with all of the following characteristics: (1) situated in a topographic depression or a dammed river channel; (2) lacking trees, shrubs, persistent emergents, emergent moss or lichens with greater than 30% area coverage; and (3) total area exceeds 20 acres. Similar wetland areas totaling less than 20 acres are also included in the Lacustrine System if an active wave-formed or bedrock shoreline feature makes up all or part of the boundary, or if the water depth in the deepest part of the basin exceeds 6.6 feet (2 meters) at low water.

Figure 10.2: Lacustrine Wetland System

Source: National Wetlands Inventory

The Lacustrine System includes permanently flooded lakes and reservoirs (e.g. Lake Superior), intermittent lakes (e.g. playa lakes), and tidal lakes with ocean-derived salinities below 0.5% (e.g. Grand lake, Louisiana). Typically, there are extensive areas of deep water and there is considerable wave action. Islands of Palustrine wetlands may lie within the boundaries of the Lacustrine System.

Figure 10.3: Palustrine Wetland System

PALUSTRINE UPLAND PALUSTRINE U

Source: National Wetlands Inventory

The Palustrine System includes all nontidal wetlands dominated by trees, shrubs, persistent emergent, emergent mosses or lichens, and all such wetlands that occur in tidal areas where salinity due to ocean-derived salts is below 0.5%. It also includes wetlands lacking such vegetation, but with all of the following four characteristics: (1) area less than

.

20 acres; (2) lacking active wave-formed or bedrock shoreline features; (3) water depth in the deepest part of basin less than 6.6 feet (2 meters) at low water; and (4) salinity due to ocean-derived salts less than 0.5%.

The Palustrine System was developed to group the vegetated wetlands traditionally called by such names as marsh, swamp, bog, fen, and prairie, which are found throughout the United States. It also includes the small, shallow, permanent, or intermittent water bodies often called ponds. These wetlands may be situated shoreward of lakes, river channels, or estuaries; on river floodplains; in isolated catchments; or on slopes. They may also occur as islands in lakes or rivers.

Wetlands play an important role in the ecology of Cherry County. Wetlands are home to many species of wildlife, many of which live only in wetland areas. Wetlands also provide an important service to nearby areas by holding and retaining floodwaters. These waters are then slowly released as surface water, or are used to recharge groundwater supplies. Wetlands also help regulate stream flows during dry periods.

The U.S. Fish and Wildlife Service (FWS) produce information on the characteristics, extent, and status of the Nation's wetlands and deep-water habitats. This information has been compiled and organized into the National Wetlands Inventory (NWI).

Wetlands are categorized in several classifications, each more detailed and specific than the previous. The NWI uses five systems; marine, estuarine, riverine, lacustrine, and palustrine. Within each system, there are subsystems, classes, subclasses, and dominance types to describe different wetland characteristics. The system classification refers to wetlands sharing similar hydrologic, geomorphologic, chemical, or biological factors. The following are definitions and examples of three of the five systems used to describe wetlands. The Marine and Estuarine wetland systems are located in and near the open ocean; therefore, they do not occur in Nebraska. Further information, through NWI, on specific classifications is available.

Cherry County experiences each of these three other wetland systems. The majority of the wetlands in the county occur, mostly along the Niobrara River and as meadow areas (mostly around the Wood Lake are). However, there are smaller wetland pockets scattered throughout Cherry County. Figures 10.1, 10.2, and 10.3 depict common examples of the riverine, lacustrine, and palustrine wetlands, respectively. Figure 10.4 shows the occurrence of wetlands in Cherry County. These figures were produced by the United States Fish and Wildlife Service, and are taken from their 1979 publication entitled "Classification of Wetlands and Deepwater Habitats of the United States", some enhancement was completed in order to place accents on key areas.

Figure 10.1 shows the riverine system includes all wetlands occurring in channels, with two exceptions: (1) wetlands dominated by trees, shrubs, persistent emergent, emergent mosses, or lichens, and (2) habitats with water containing ocean derived salts in excess of 0.5%. A channel is an open conduit either naturally or artificially created which periodically or continuously contains moving water, or which forms a connecting link between two bodies of standing water. Therefore, water is usually, but not always, flowing in the riverine system.

Springs discharging into a channel are also part of the riverine system. Uplands and palustrine wetlands may occur in the channel, but are not included in the riverine system. Palustrine Moss-Lichen Wetlands, Emergent Wetlands, Scrub-Shrub Wetlands, and Forested Wetlands may occur adjacent to the riverine system, often in a floodplain.

The Lacustrine System includes all wetlands with all of the following characteristics: (1) situated in a topographic depression or a dammed river channel; (2) lacking trees, shrubs, persistent emergents, emergent moss or lichens with greater than 30% area coverage; and (3) total area exceeds 20 acres. Similar wetland areas totaling less than 20 acres are also included in the Lacustrine System if an active wave-formed or bedrock shoreline feature makes up all or part of the boundary, or if the water depth in the deepest part of the basin exceeds 6.6 feet (2 meters) at low water.

The Lacustrine System includes permanently flooded lakes and reservoirs (e.g. Lake Superior), intermittent lakes (e.g. playa lakes), and tidal lakes with ocean-derived salinities below 0.5% (e.g. Grand lake, Louisiana). Typically, there are extensive areas of deep water and there is considerable wave action. Islands of Palustrine wetlands may lie within the boundaries of the Lacustrine System.

The Palustrine System includes all nontidal wetlands dominated by trees, shrubs, persistent emergent, emergent mosses or lichens, and all such wetlands that occur in tidal areas where salinity due to ocean-derived salts is below 0.5%. It also includes wetlands lacking such vegetation, but with all of the following four characteristics: (1) area less than 20 acres; (2) lacking active wave-formed or bedrock shoreline features; (3) water depth in the deepest part of basin less than 6.6 feet (2 meters) at low water; and (4) salinity due to ocean-derived salts less than 0.5%.

The Palustrine System was developed to group the vegetated wetlands traditionally called by such names as marsh, swamp, bog, fen, and prairie, which are found throughout the United States. It also includes the small, shallow, permanent, or intermittent water bodies often called ponds. These wetlands may be situated shoreward of lakes, river channels, or estuaries; on river floodplains; in isolated catchments; or on slopes. They may also occur as islands in lakes or rivers.

WATER QUALITY, RIPARIAN AREAS, AND WETLANDS AND BEST MANAGEMENT PRACTICES

Best Management Practices are a practice or combination of practices determined to be the most effective and practicable means of preventing or reducing the amount of pollution generated by non-point sources. In the absence of State of Nebraska or NRD approved BMPs, nonpoint source activities are to be conducted in a manner that demonstrates a knowledgeable and reasonable effort to minimize resulting adverse water quality impacts. "Knowledgeable" is herein interpreted to mean, based upon the best available science and "reasonable" is interpreted to mean, economically feasible for the agriculture operation(s) involved.

There is a vast diversity of riparian, groundwater and wetland areas in Cherry County, in terms of waterway or impoundment types, climatic factors, up and down stream watershed impacts, condition, trend, potential for improvement, and opportunity for management changes.

NATIONAL WILD AND SCENIC RIVER SYSTEMS

The National Wild and Scenic Rivers Act, 16 U.S.C. §§1271-1287, provides the guidance for identification and designation of individual river segments for study and for recommendation for inclusion in the system in order to provide balance with Dams (development) and to provide unique representation within the national system.

Section 1271 called for protection of "certain selected rivers of the Nation, which, with their immediate environments, possess outstandingly remarkable scenic, recreational, geologic, fish and wildlife, historic, cultural or other similar values." Among those "certain selected rivers" there are now in Cherry County some rivers, which have either been included in the system or proposed for inclusion as "outstandingly remarkable" rivers.

The Cherry County Board is satisfied there is no further need for including any other segments of rivers or tributaries within Cherry County in the national system and there are no others which meet the standards set by Section 1271.

Based upon inaction by Congress to further act on the additional areas, the remaining areas, if not already done, should be released from the designated program. Based upon 16 U.S.C. §1283...the section shall not be "construed to abrogate any existing rights, privileges, or contracts affecting Federal lands held by any private party without the consent of said party.

SOIL FORMATION AND CLASSIFICATION

Cherry County has over 100 different soil types scattered throughout the county. Some of these soils are similar; however, many are completely different from one another. The 2005 Cherry County Soil Survey identify key aspects of each soil. A summary of these soil qualities is included in Appendix A. [Recommend placing the soil quality detail from this chapter in an appendix. Have deleted this information here for readability.]

OTHER FACTORS IMPACTING LAND USES

The previously discussed uses are typical to counties similar to Cherry County. Earlier in this Chapter, the issue of wetlands was covered in some detail and is very closely associated with surface and groundwater. The following topics are greatly influenced by the type of soil and its location in an area. The following paragraphs will focus on Prime Farmland and Percent of Slope.

Prime Farmland

Prime farmland is directly tied to the specific soils and their composition. The map in Figure 10.** identifies Prime Farmland, Prime Farmland if

		~~~~	V	ational Vildlife Refuge		15.24	mont			1	1		1	
		s	OUTH DAKOTA			.3373 f	7						2724 ft	
35N 40W 3	35N 39W	35N 38W	35N 37W	EBRASK 35N 36W		35N 34W	35N 33W	35N 32W	35N 31W	35N,30W	SOUTH DAKO	35N 28W	35N 27W	35N 26W
34N 40W 3 34N 41W	14N 39W	34N.38W	Mentilme 34N 37W	34N 36W	20) 34N 35W	34N 34W	GOCLY 34N 33W	Nanzal 34N 32W	34N 31W	DTO 34N 30W	GTOOLSS	<b>2</b> 0]	34N 27W Valentine	34N 26W
33N 40W 33N 41W	39W 20	33N 38W	33N 37W	33N 36W	33N 35W	33N 34W	33N 33W	33N 32W 16F	-33N 31W	33N 30W	33N 29W	33N 28W	33N 27W	33N 26W
	32N 39W	32N 38W	32N 37W	32N 36W	32N 35W	32N 34W	32N 33W	32N 32W Sam Mation	32N 31W Hust R. Kelvie al Fore st	32N 30W	97 32N 29W	32N 28W	32N 27W	32N 26V 203
Sheridan Sheridan Sheridan Sheridan Sheridan Sheridan	31N 39W	31N 38W	31N 37W	31N 36W	31N 35W	31N 34W	31N 33W	31N 32W	31N 31W Remain Street	31N 30W	31N 29W/~	31N 28W	31N 27W	31N 26V
30N 40W 30N 41W	30N 39W	30N.38W.	30N 37W	30N 36W	30N 35W 3662 ft	30N 34W	30N 33W	30N 32W	Management A 30N 31W	30N 30W	30N 29W	30N 28W	3045 ft 30N 27W	30N 26V
Billys ake	29N 39W	29N 38W	29N 37W	29N 36W	29N 35W	29N 34W	29N 33W	29N 32W	29N 31W	29N 30W	29N 29W	29N 28W	29N 27W (83)	29N 26V
28N 40W	28N 39W	28N 38W	28N 37W	28N 36W	28N 35W	28N 34W	28N 33W	and sold and	28N 31W	28N 30W	28N 29W	28N 28V	A A	28N 2
27N 40W	27N 39W	27N 38W	27N 37W	27N 36W	27N 35W	27N 34W	27N 33W	27N 32W 97	27N 31W	27N 30W	27Ň 29W	27N 28M		2712
26N 40W 25N 40W	26N 39W	26N 38W	26N 37W	26N 36W	26N 35W	26N 34W	26N 33W	26N32W	26N 31W	26N.30W	26N 29W	26N 28M	260,270	26N 2
	25N 39W	25N 38W	25N,37W Cherry	25N 36W	and "	25N 34W	25N 33W	25N 32W Cherry	25N 31W	25N 30W	25N 29W	25N 28W	4 7	The
			1	~			2.4	- A	Midd	le Loup River	5	The	omas 3083 ft 2979 ft	

Amonth and the

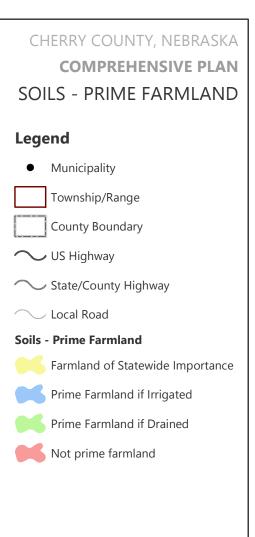
1

11

11 1 2 -






			Na Wi Re	tional Idlife ifuge			and a							
		S	оџтн ракота			,3373 ft					SOUTH DAKOT	FA	2724 ft	
35N 40W	35N 39W	35N 38W	35N 37W	35N 36W	35N 35W	35N 34W	35N 33W	35N 32W	35N 31W	35N 30W	35N 29W	35N 28W	35N 27W	35N 26V
34N 40W 4N 41W	34N 39W	34N 38W	Merriman 34N 37W	ם 34N 36W	20) 34N 35W	34N 34W	Cody 34N 33W	Nenzel 34N 32W	34N 31W	STE 34N 30W	Grooksto 34N 29W	34N 28W	34N 27W Valentine	34N 261
33N 40W 8N 41W	33N 39W 20	33N 38W	33N 37W	33N 36W	33N 35W	33N 34W	33N 33W	33N 32W 16F	33N 31W	33N 30W	33N 29W	33N 28W	33N 27W	33N 26
32N 40W	32N 39W	32N 38W	<i>32N 37W</i>	32N 36W	32N 35W	32N 34W	32N 33W	32N 32W	32N 31W	32N 30W	97 32N 29W	32N 28W	32N 27W	32N 20
31N 40W 31N 41W	31N.39W	31N 38W	31N 37W	31N.36W	31N 35W	31N 34W	31N,33W	31N 32W	31N31W	31N 30W	31N 29W	31N 28W	31N 27W	31N
30N 40W 30N 41W	30N/39W	30N 38W	30N 37W	30N/36W	30N 35W	30N 34W	30N 33W	30N 32W	30N 31W	30N 30W	30N 29W	30N/28W	30N/27W	30N
29N 40W 29N 41W	29N 39W	29N 38W	29N 37W	29N 36W	29N 35W	29N 34W	29N 33W	29N 32W	29N 31W	29N 30W	29N 29W	29N 28W	29N 27W	29N
28N 40W	28N 39W	28N 35W	28N 37W	28N.36W	28N 35W	28N 34W	28N,33W	28N 32W	28N 31W	28N 30W	28N 29W	28N 28W	28N 27W	-24
27N 40W	27N 39W	27N 38W	27N 37W	27N 36W	27N 35W	27N 34W	27N 33W	27N 32W 97	27N 31W	27N 30W	$1 \leq \chi$	27N 28W	27N 27W	27
26N 40W	26N 39W	61 26N 38W	26N 37W	26N 36W	26N 35W	26N 34W	26N 33W	26N32W	26N 31W	26N 30W	26N 29W	26N 28W	26N 27W	20
25N 40W	25N 39W	25N 38W	25N 37W	25N 36W	25N 35W	25N 34W	25N,33W	25N 32W	25N 31W	25N 30W	25N 29W	25N 28W	25N 27W	25

.4185 ft

Middle Loup River

2979 ft







Drained, Farmland of Statewide Importance, and Not Prime Farmland.

According to the USDA, Prime farmland

"...is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops. It must also be available for these uses. It has the soil quality, arowing season, and moisture supply needed to produce economically sustained high yields of crops when treated and managed according to acceptable farming methods, including water management. In general, prime farmlands have an adequate and dependable water supply from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, acceptable salt and sodium content, and few or no rocks. They are permeable to water and air. Prime farmlands are not excessively erodible or saturated with water for a long period of time, and they either do not flood frequently or are protected from flooding."

Prime farmland is one of several kinds of important farmland defined by the U.S. Department of Agriculture. It is of major importance in meeting the nation's short- and long-range needs for food and fiber. The acreage of high-quality farmland is limited, and the U.S. Department of Agriculture recognizes that government at local, state, and federal levels, as well as individuals, must encourage and facilitate the wise use of our nation's prime farmland.

Prime farmland soils, as defined by the U.S. Department of Agriculture, are soils that are best suited to producing food, feed, forage, fiber, and oilseed crops. Such soils have properties that are favorable for the economic production of sustained high yields of crops. The soils need only to be treated and managed using acceptable farming methods. The moisture supply, of course, must be adequate, and the growing season has to be sufficiently long. Prime farmland soils produce the highest yields with minimal inputs of energy and economic resources, and farming these soils results in the least damage to the environment.

Prime farmland soils may presently be in use as cropland, pasture, or woodland, or they may be in other uses. They either are used for producing food or fiber or are available for these uses. Urban or built-up land and water areas cannot be

considered prime farmland.

Prime farmland soils usually get an adequate and dependable supply of moisture from precipitation or irrigation. The temperature and growing season are favorable. The acidity or alkalinity level of the soils is acceptable. The soils have few or no rocks and are permeable to water and air. They are not excessively erodible or saturated with water for long periods and are not subject to frequent flooding during the growing season. The slope ranges mainly from 0 to 6 percent.

Soils that have a high water table, are subject to flooding, or are droughty may qualify as prime farmland soils if the limitations or hazards are overcome by drainage, flood control, or irrigation. Onsite evaluation is necessary to determine the effectiveness of corrective measures. More information on the criteria for prime farmland can be obtained at the local office of the Soil Conservation Service.

Cherry County contains approximately 3,845,903 acres of land within the county borders. The Prime Farmland found in the county is in two forms: Farmland of Statewide Importance and Prime Farmland, if drained.

Figure 10.** shows the locations of the Prime Farmland within Cherry County. However, the amount of these two classifications are very limited. Farmland of Statewide Importance makes up a total of 20,725.4 acres or 0.54% of the total county; while Prime, if drained had 47,307.7 acres or 1.23% of the entire county. All together, Prime Farmland makes up only 1.77% of Cherry County.

Soils determined to be prime farmland need to be protected throughout the rural areas of Nebraska. These soils are typically the best crop producing lands.

#### Percent of Slope

The slope of an area is critical to the ability of the area to be used for agricultural purposes to constructing homes and septic systems. Typically the steeper the slope the more difficult these issues become. However, lands with little to no slope can also create problems regarding the inability of water to drain away from a site.

Classes	Complex	Slope Gra	dient Limits
Simple Slopes	Slopes	Lower Percent	Upper Percent
Nearly level	Nearly level	0	3
Gently sloping	Undulating	1	8
Strongly sloping	Rolling	4	16
M o d e r a t e l y sloping	Hilly	10	30
Steep	Steep	20	60
Very steep	Very steep	>45	

#### TABLE 10.1: DEFINITION OF SOIL SLOPES

Figure A10.13 (Appendices) shows the percent slope for Cherry County. Based upon the map, Cherry County has steep slopes in limited locations of the county throughout the entire county; however, some of the steepest are in the northeast along the Niobrara River.

Based upon Table 10.* slope is a factor in several soils/locations in the county. In a number of situations, any soil conditions based upon slope could likely be engineered to become more compatible. However, it is important to involve an engineer, geologist, or soil scientist in the issue in order to make the correct modifications throughout the county.

#### Permeability

Permeability is defined in the Cherry County Soil Survey as..."The quality of the soil that enables water to move downward through the profile. Permeability is measured as the number of inches per hour that water moves downward through saturated soils." Permeability is rated as: Very slow less than 0.06 inches 0.06 to 0.20 inches Slow Moderately slow 0.2 to 0.6 inches Moderately rapid 2.0 to 6.0 inches Rapid 6.0 to 20 inches Very rapid more than 20 inches

Table 10.2 indicates the various permeability rates for each soil and at what depth the rating was taken. The Table indicates those considered to moderately rapid or higher in red. There are a number of soils in Cherry County with a permeability of twenty inches per hour or more.

There are a number of specific uses not compatible for soils rated as Moderately rapid or higher. Soils rated at these levels will move contaminated materials much faster through the profile and into the regional water tables and aquifers. These uses will typically include anything dealing with animal or human sanitary waste systems.

Permeability, as with other soil factors, can be overcome with the proper engineering and construction techniques. Caution is a must when dealing with these conditions since the potential for contaminating an aquifer that feeds an entire area with water is a risk.

#### WATER IMPACT ON CHERRY COUNTY

Water, along with the soils are the two most restricting environmental conditions faced by Cherry County. Damaging either one of these two elements will impact the residents of the county for years to come. As with the soil descriptions and conditions, it is important to discuss the water factors impacting Cherry County during the present and coming planning period. Water in this section will apply to two topics, surface water and ground water.

Surface water applies to any water running across a surface and eventually runs into a minor drainage area, eventually ending up in a major waterway such as the Niobrara River. However, a certain portion of surface water can and is absorbed by the soil in order to support plant life including corn, soybeans, and grass lawns.

Cherry County lies in two distinct watersheds, these are defined and drainage areas controlled by the respective Natural Resource District. The two districts covering Cherry County are the Middle Niobrara Natural Resource District and the Upper Loup Natural Resource District. The Middle Niobrara is based in Valentine, Nebraska, while the Upper Loup is in Thedford, Nebraska.

Soil Syn	nbol/Soil Name	Depth (inches)	Permeability (inches/hour)	Shrink-Swell potential
4201	Almeria	0-7 7-79	2-6	Low
		0-3	6-20	Low
4203	Almeria	3-6	.6-6	Low
		6-60	6-20	Low
		0-10	6-20	Low
1205	Almeria	10-12	6-20	Low
		12-24 24-79	6-20 6-20	Low
		0-11	2-6	Low Low
001	Anselmo	11-44	2-6	Low
		44-79	6-20	Low
		0-11	2-6	Low
2004	Anselmo	11-44	2-6	Low
		44-79	6-20	Low
	Amagina	0-11	2-6	Low
2006	Anselmo	11-44 44-79	2-6 6-20	Low Low
		0-11	6-20	Low
012	Anselmo	11-36	2-6	Low
		36-79	6-20	Low
		0-11	6-20	Low
013	Anselmo	11-36	2-6	Low
		36-79	6-20	Low
		0-6	.6-6	Low
	Anselmo	6-12 12-34	2-6 2-6	Low Low
019		34-60	6-20	Low
		0-4	2-6	Low
	Longpine	4-12	2-6	Low
		12-60	1.42-14.17	-
221	Bolent	0-4	2-6	Low
		4-60	6-20	Low
224	Bolent	0-5	6-20	Low
		5-60	6-20	Low
		0-5	6-20	Low
	Bolent	5-25	6-20	Low
226		25-79	6-20	Low
		0-2	6-20	Low
	Almeria	2-4 4-79	.6-2 6-20	Low Low
			0.20	2011
	Bolent	0-4	6-20	Low
		4-60	6-20	Low
228		0-9 9-38	6-20	Low
	Calamus	38-60	6-20 6-20	Low Low
	D	0-16	2-6	Low
5121	Busher	16-45 45-60	2-6 1.42-14.17	Low
		-3-00	1.72-19.1/	-
	Busher	0-18	2-6	Low
	DOSITE	18-42	2-6	Low
141		42-60	1.42-14.17	Low
	_	0-4 4-15	2-6 2-6	Low
	Tassel	15-60	.2-0	-
	Cala	0-4	6-20	Low
231	Calamus	4-30 30-60	6-20 6-20	Low Low
	<b>6</b> .1	0-9	6-20	Low
233	Calamus	9-38	6-20 4-20	Low
		38-60	6-20	Low
	Calamus	0-4	6-20	Low
	Calamus	4-39	6-20	Low
4237		39-79	6-20	Low
		0-7 7-25	6-20 6-20	Low Low
	Bolent	25-79	6-20	Low

Soil Sym	bol/Soil Name	Depth (inches)	Permeability (inches/hour)	Shrink-Swel potential
		0-11	.6-2	Moderate
4455	Crowther	11-26 26-79	.6-2 6-20	High Low
		0-3	6-20	Low
AAE/	Crowther	3-24	.6-2	Moderate
4456	Crowther	24-36	.6-2	Moderate
		36-79	6-20	Low
4462	Cullison	0-8 8-24	.6-2 .6-2	Moderate Moderate
		24-79	.6-2	Moderate
		0-2	6-20	Low
4463	Cullison	2-27	.6-6	Moderate
		27-79	.6-6	Moderate
4467	Cutcomb	0-52 52-79	6-20 6-20	Low Low
		0-19	2-20	Low
4470	Doughboy	19-38	.6-6	Low
		38-79	.6-6	Low
4471	Doughboy	0-14	6-20	Low
	Doughboy	14-37	.6-6	Low
		0-8	2-20	Low
	Duda	8-36 36-79	2-20 1.42-14.17	Low
4476		0-5	6-20	Low
	Fishberry	5-12 12-79	6-20 1.42-14.17	Low
		12-79 0-18	1.42-14.17 6-20	- Low
4485	Dunday	18-25	6-20	Low
		25-79	6-20	Low
4490	Dunday	0-18	6-20	Low
	•	18-25	6-20	Low
4521	Els	0-6	6-20	Low
		6-35	6-20	Low
	Els	0-9 9-37	6-20 6-20	Low Low
4536		37-79	6-20	Low
		0-1 1-9	6-20 2-20	Low
	Hoffland	9-79	6-20	Low
		0-5	6-20	Low
	Els	5-40 40-60	6-20 6-20	Low Low
4540		0-6	6-20	Low
	Selia	6-14 14-60	.062 6-20	Low Low
	Els	0-6 6-35	6-20 6-20	Low Low
4545	-	35-79	6-20	Low
	lpage	0-4 4-15	6-20 6-20	Low Low
		15-38	6-20	Low
		0-14	6-20	Low
4553	Elsmere	14-23	6-20	Low
		0-8	6-20	Low
4556	Elsmere	8-14	6-20 6-20	Low
		14-79 0-14	6-20 6-20	Low Low
	Elsmere	14-23	6-20	Low
4561		23-79 0-10	6-20 2-20	Low Low
	Loup	10-15	6-20	Low
	Loup	15-79	6-20	Low
	Els	0-6 6-16	6-20 6-20	Low Low
4563	LIJ	16-79	6-20	Low
-303	Inven	0-7 7-25	6-20 6-20	Low
	Tryon	7-25 25-79	6-20 6-20	Low Low
		0-4	2-6	Low
3351	Fishberry	4-15	6-20	Low

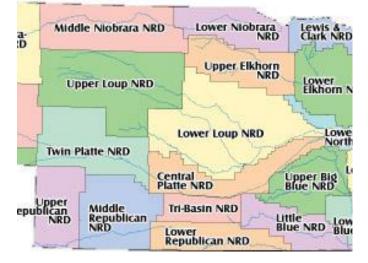
#### TABLE 10.2: PERMEABILITY/SHRINK-SWELL BY SOIL TYPE

Soi	l Symbol/Soil Name	Depth (inches)	Permeability (inches/hour)	Shrink-Swell potential
3352	Fishberry	0-5 5-12 12-60	2-6 6-20 1.42-14.17	Low Low
	Duda	0-4 4-24 24-60	2-20 2-20 1.42-20	Low Low
3353	Fishberry	0-5 5-12	2-6 6-20	Low Low
	Rock	12-60 0-60	1.42-14.17 .0115	-
9903	Fluvaquents	0-2 2-79	6-20 20-100	Low Low
4576	Gannett	0-10 10-22 22-79	.6-2 2-6 6-20	Moderate Low Low
4579	Gannett	0-2 2-10 10-32 32-79	6-20 .6-6 2-20 6-20	Low Moderate Low Low
4590	Gus	0-1 1-6 6-28 28-60	.6-2 .6-2 .6-2 .6-2	Moderate Moderate Moderate
4591	Gus	0-2 2-5 5-36 36-79	6-20 .6-6 .6-6 .6-6	Moderate Moderate High
3167	Hennings	0-7 7-27 27-36 36-55 55-60	.6-6 .6-2 .6-6 2-20 1.42-14.17	Low Moderate Low Low
4596	Hennings	0-7 7-27 27-36 36-55 55-60	.6-6 .6-2 .6-6 2-20 1.42-14.17	Low Moderate Low Low
4597	Hennings	0-7 7-27 27-36 36-55 55-60	.6-6 .6-2 .6-6 2-20 1.42-14.17	Low Moderate Low Low
4598	Hennings	0-8 8-22 22-26 26-42 42-60	.6-6 .6-2 .6-6 2-20 1.42-14.17	Low Moderate Low Low
	Anselmo	0-10 10-18 18-26 26-60	.6-6 2-6 2-6 6-20	Low Low Low Low
4635	Hoffland	0-1 1-9 9-79	6-20 2-20 6-20	- Low Low
4636	Hoffland	0-1 1-9 9-79	6-20 2-20 6-20	- Low Low
3170	Holt	0-7 7-17 17-22 22-42	2-6 .6-2 .6-2 .2-2	Low Low Low
3172	Holt	0-7 7-17 17-22 22-42	2-6 .6-2 .6-2 .2-2	Low Low Low
	Longpine	0-6 6-16 16-36	2-6 2-6 .2-2	Low Low
4641	lpage	0-4 4-15 15-38 38-79	6-20 6-20 6-20 6-20	Low Low Low Low

Soil S	ymbol/Soil Name	Depth (inches)	Permeability (inches/hour)	Shrink-Swell potential
		0-4	6-20	Low
4643	lpage	4-40 40-79	6-20 6-20	Low Low
		0-5	6-20	Low
	la nun	5-11	6-20	Low
4646	lpage	11-22	6-20	Low
		22-79	6-20	Low
	lpage	0-4 4-15	6-20 6-20	Low Low
	ipage	15-38	6-20	Low
4655		38-79	6-20	Low
	<b>-</b>	0-7	6-20	Low
	Tryon	7-25 25-79	6-20 6-20	Low Low
		0-6	2-6	Low
3180	Jensen	6-35	.6-2	Moderate
		35-60	20-100	Low
		0-22	.6-2	Low
5188	Keya	22-42 42-79	.6-2 .6-2	Moderate Low
		0-18	6-20	Low
4370	Libory	18-57	2-20	Low
	-	57-79	2-20	Low
		0-6	.6-2	Low
1661	Lodgepole	6-41	.062	High Low
		41-60 0-10	<u>.6-2</u> 2-20	Low
4662	Loup	10-15	6-20	Low
	· · •	15-79	6-20	Low
		0-3	6-20	-
4670	Loup	3-14	2-20	Low
		14-79	<u>6-20</u> 6-20	Low
		0-2 2-9	2-20	Low
4691	Marlake	9-16	6-20	Low
		16-79	6-20	Low
		0-6	6-20	Low
4700	McKelvie	6-10 10-79	6-20 6-20	Low Low
		0-6	6-20	Low
4701	McKelvie	6-10	6-20	Low
		10-79	6-20	Low
4700		0-6	6-20	Low
4702	McKelvie	6-10 10-79	6-20 6-20	Low Low
		0-6	6-20	Low
	McKelvie	6-10	6-20	Low
4703		10-79	6-20	Low
		0-5 5-15	6-20	Low
	Fishberry	15-79	6-20 006	Low
		0-6	6-20	Low
	McKelvie	6-36	6-20	Low
470.5		36-79	6-20	Low
4704		0-5 5-15	6-20 6-20	Low Low
	Fishberry-	15-79	006	-
	Rock	0-79	0	-
		0-6	6-20	Low
4705	McKelvie-Rock	6-36	6-20	Low
		36-79 0-79	6-20 0	Low
		0-6	6-20	Low
	McKelvie	6-36	6-20	Low
4707		36-60	6-20	Low
	Ustorthents	0-11 11-60	6-20 2-6	Low Low
		0-5	2-6	Low
3249	Meadin	5-14	6-20	Low
		14-60	20-100	Low
		0-6	2-6	Low
3251	Meadin	6-11	6-20	Low
				I

Shrink-Swell

potential Low Low


4390 Natick		Depth (inches)	Permeability (inches/hour)	Shrink-Swell potential	Soil Syn	nbol/Soil Name	Depth (inches)	Permeabilit (inches/hou
4390	Natick	0-5 5-11	6-20 6-20	Low Low	5266	Tuthill	0-8 8-23	.6-6 .6-2
		11-22 22-79	6-20 6-20	Low Low			23-50 50-60	6-20 6-20
		0-18	6-20	Low			0-8	.6-6
4712	Nenzel	18-33 33-79	6-20 6-20	Low Low	5267	Tuthill	8-23 23-50	.6-2 6-20
		0-14	6-20	Low			50-60	6-20
1711	Nenzel	14-21	6-20	Low	4781	Valentine	0-7 7-14	6-20 6-20
		21-30 30-79	6-20 6-20	Low Low	4/01	Vülennie	14-79	6-20
		0-14	.6-2	Low	1701		0-7	6-20
4243	Ord	14-34 34-60	2-6 6-20	Low Low	4791	Valentine	7-14 14-79	6-20 6-20
		0-5	6-20	Low			0-4	6-20
4713	Orpha	5-44 44-60	6-20 6-20	Low Low	4800	Valentine	4-20 20-79	6-20 6-20
	Quert a	0-8	6-20	Low			0-5	6-20
	Orpha	8-14	6-20	Low	4810	Valentine	5-12 12-79	6-20 6-20
4717		14-60 0-6	6-20 6-20	Low Low			0-5	6-20
	Niobrara	6-13	6-20 1.42-14.17	Low	4807	Valentine	5-12	6-20
	Orpha	<u>13-60</u> 0-6	6-20	Low			12-79 0-7	6-20
4718		6-26	6-20	Low	4814	Valentine	7-14	6-20
	Rock	26-60 0-60	6-20 .0115	Low			14-79 0-7	6-20 6-20
		0-5	6-20	Low	4818	Valentine	7-14	6-20
4720	Pivot	5-11 11-28	6-20 6-20	Low Low			14-79 0-79	6-20 6-20
		28-60	20-100	Low	4450	Valentine	0-79	6-20 6-20
		0-10 10-32	6-20 6-20	Low Low	4450	Vülennie	4-20 20-79	6-20 6-20
4730	Sandrose	32-48	.6-2	Moderate			0-4	6-20
		48-60	.6-6	Low		Valentine	4-20	6-20
4733		0-16 16-30	6-20 6-20	Low Low	4851		20-79 0-6	6-20 .6-6
	Sandrose	30-48	.6-2	Moderate		Birdwood	6-36	2-20
		48-60 0-17	.6-6 6-20	Low Low			36-79	2-20 6-20
	Hennings	17-29 29-35	.6-2 .6-6	Moderate Low		Valentine	7-14	6-20
	nennings	35-55	2-20	Low	4856		14-79 0-8	6-20 2-20
		55-60	1.42-14.17			Duda	8-36	2-20
		0-16 16-30	6-20 6-20	Low Low			36-79	1.42-14.12
	Sandrose	30-48	.6-2	Moderate		Valentine	5-12	6-20
4734		48-60 0-17	.6-6 6-20	Low Low	4870		12-79 0-8	6-20 2-20
	Hennings	17-29 29-35	.6-2 .6-6	Moderate Low		Duda	8-36	2-20
	nennings	35-55	2-20	Low			36-79	1.42-14.17
		55-60	1.42-14.17 6-20	- Low		Valentine	0-7 7-14	6-20 6-20
		0-16 16-30	6-20	Low	4875		14-79 0-18	6-20 6-20
	Sandrose	30-48	.6-2 .6-6	Moderate Low		Dunday	18-25	6-20
4735		48-60 0-17	6-20	Low			25-79	6-20
4/00		17-29	.6-2 .6-6	Low Moderate		Valentine	0-7 7-14	6-20 6-20
	Hennings	29-35 35-55	2-20	Low	4861	Valennine	14-79	6-20
		55-60	1.42 14.17	Low	4001	Els	0-6 6-35	6-20 6-20
		0-13	2-6	Low			35-79	6-20
1809	Satanta	13-46 46-79	.6-2 2-6	Low Low			0-5	6-20
0000	<u>Cime e e e</u>	0-5	6-20	Low		Valentine	5-12	6-20
8929	Simeon	5-79	6-20	Low	4867		12-79 0-18	6-20 6-20
	Simeon	0-5 5-79	6-20 6-20	Low Low		Libory	18-57	.6-6
8939		0-5	6-20	Low			57-79	.6-6
	Valentine	5-12 12-79	6-20 6-20	Low Low		\/alaa#!	0-7 7-14	6-20 6-20
	Simeon	0-5	6-20	Low	4771	Valentine	14-79 0-19	6-20 6-20
8941	5	5-79 0-5	6-20 6-20	Low Low	4//1	Mullen	19-37	6-20 6-20
	Valentine	5-12	6-20	Low		Mollen	37-58	.6-6
		12-79 0-7	6-20 6-20	Low		1	58-79	.6-6
4740	Tryon	7-25	6-20	Low				
		25-79	6-20	Low				
		0-4	2-6	Low				

#### TABLE 10.2: PERMEABILITY/SHRINK-SWELL BY SOIL TYPE

## TABLE 10.2: PERMEABILITY/SHRINK-SWELL BY SOIL TYPE CONT.

Soil Syr	nbol/Soil Name	Depth (inches)	Permeability (inches/hour)	Shrink-Swell potential
		0-6	6-20	Low
	Valentine	6-60	6-20	Low
4872		0-11	6-20	Low
40/2		11-22	6-20	Low
	Sandrose	22-41	.6-2	Moderate
		41-60	.6-6	Low
	Valentine	0-5	6-20	Low
	Vulennine	5-12	6-20	Low
4889		12-79	6-20	Low
	Tryon	0-7	6-20	Low
	,	7-79	6-20	Low
		0-7	2-6	Low
5281	Vetal	7-23	2-6	Low
		23-48	2-6	Low
		48-79	6-20	Low
		0-25	6-20	Low
5288	Vetal	25-42	2-6	Low
		42-79	6-20	Low
		0-6	6-20	Low
4894	Wildhorse	6-11	6-20	Low
4074	Windhorse	11-22	6-20	Low
		22-79	6-20	Low

#### FIGURE 10.3: NATURAL RESOURCE DISTRICTS



#### **GROUNDWATER/WATER TABLE ELEVATIONS**

Groundwater refers to water found beneath the surface and includes smaller pockets of water as well as aquifers. This water source is where the residents of Cherry County both city and rural, get their potable water for everyday living as well as the irrigation water for crops. The ability to find water meeting these specific needs is critical to the placement of certain

Irrigated and Intensive agriculture, including row crops, are critical to the economic base of the County and are important to the economic stability of the County. The Nebraska legislature has recognized that importance in Nebraska statute, §23-114.04 [statutory reference corrected from original document]. Irrigation wells in Cherry County are very limited for two reasons: the typical depth to water and the type of soils are not conducive to crops like corn, soybeans, etc. The main location for irrigation wells in Cherry County are in the northern areas near the Niobrara River.

#### **Domestic and Livestock supplies**

Typically domestic and most livestock water supplies are obtained through the use of small diameter wells. Most of these wells are drilled only a few feet below the top of the water table, are low production wells, and equipped with electric powered jet or submersible pumps. The water yield of this type of well is usually no more than five gallons of water per minute.

#### Public Water Supplies

The public water supply is one of the most critical uses of groundwater resources. These supplies are used by the municipalities supplying water to its residents. In Cherry County, all of the incorporated communities have a publicly owned water supply system.

The State of Nebraska places a great deal of value on these systems across the state. The value is so high that a Wellhead Protection Program is available to municipalities through Nebraska Department of Environment and Energy. This program allows the municipalities, after a series of prescribed steps are completed, to designate special areas around their wells and well fields in order to protect the quality and quantity of the water within the underlying Development aauifers. of а community wellhead protection plan can help communities receive financial assistance to protect and secure the source of drinking water for the community.

### WATER RIGHTS

#### **General Rights**

Nebraska water resources play a major role in the state's heritage and economy. Beginning with the state constitution. Nebraska surface waters have governed the been by Appropriative First-in-Time, First-in-Right Rule which allows diversion of water from the surface waters of the state based upon the date the riaht obtained. water was (Source: water.unl.edu/article/agricultural-irrigation/ regulations-policies)

#### Correlative Water Rights for Groundwater

Correlative Rights govern the use of Nebraska ground waters. Correlative Rights allow land owners to drill wells and extract groundwater from an underlying aquifer for beneficial purposes subject to management by the public. In 1957 the Unicameral passed legislation requiring the registration of all irrigation wells.

To execute this right, land owners now must first obtain a permit to drill a well from their local Natural Resources District. If approved, the well permit allows the land owner to drill a well and extract as much groundwater as needed as long as the use is deemed beneficial. When the well development is completed the well permit is registered with the NDNR which places the information in a statewide data base. (Source: water.unl.edu/article/agricultural-irrigation/ regulations-policies)

All rules and regulations governing the use of groundwater and surface water are found listed in, "State of Nebraska, Department of Natural Resources, Ground Water, Chapter 42, Article 2 and Article 6". These chapters and articles establish the nature of water rights as rights of reality, define the process by which such rights are acquired, protect such vested rights and establish the Nebraska Department of Water Resources as the control agency regarding surface and ground water.

#### Wellhead Protection

A Wellhead Protection Area is a delineated area indicating where a water source is located, as well as the area of travel for a specific well or well field. A wellhead protection area is important from the aspect that correctly implemented, the area will aid in protecting the water supply of a domestic well providing potable water to a community.

In Nebraska, the goal of the Nebraska Department of Environment and Energy Wellhead Protection Program "...is to protect the land and groundwater surrounding public drinking water supply wells from Contamination". Within the NDEE's program there are five steps to developing a wellhead protection area, which are:

- 1. Delineation
- 2. Contamination Source Inventory
- 3. Contaminant Source Management
- 4. Emergency, Contingency, and Long-term Planning
- 5. Public Education

The mapping process includes the use of computer modeling and other data. From this the NDEE can generate a map indicating the wellhead Protection Area. However, delineating an area is not sufficient for protecting the groundwater around a public supply well, the governmental entity must adopt an ordinance in order to enforce the area and the regulations used to protect this water supply. Another way to officially regulate a wellhead protection area is for the community to create an interlocal agreement with the County to regulate these areas as part of the county comprehensive plan and zoning regulations.

#### HYDRIC SOILS

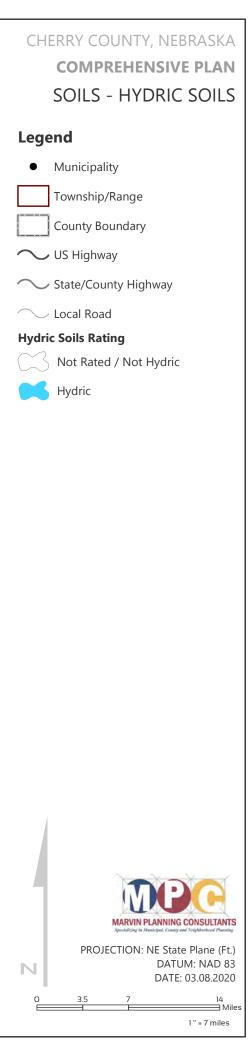
Hydric soils are formed under conditions of saturation, flooding, or ponding. The process has to occur long enough during the growing season to develop anaerobic conditions in the upper part. Hydric soils along with hydrophytic vegetation and wetland hydrology are used to define wetlands. (USDA/NRCS, Fall 1996)

Figure 10.4 indicates where the hydric soils are located in Cherry County. The soils are classified as the following:

- All Hydric; or
- Not Hydric

The majority of the soils in Cherry County are considered Not Hydric. Overall, a small amount of soils are considered as 100% Hydric or All Hydric.

#### **FLOODWAYS AND FLOODPLAINS**


Flooding is the temporary covering of the soil surface by flowing water from any source, such as streams and rivers overflowing their banks, runoff from adjacent or surrounding slopes, or a combination of different sources. During a flooding event there are a number of components that make up the flooded area. These areas include:

**Floodway** which is the channel of a watercourse and those portions of the adjoining floodplains which are required to carry and discharge the 100year flood with no significant increase in the base flood elevation.

**Floodplain** which is the low land near a watercourse which has been or may be covered by water from flood of 100-year frequency, as established by engineering practices of the U.S. Army Corps of Engineers. It shall also mean that a flood of this magnitude may have a 1 percent chance of occurring in any given year.

	Sec.			acteer lational Vildlife Refuge		SX.	and the second			14/2	1		1	
			SOUTH DAKOT			3373	ft				SOUTH DAKO		2724 ft	
35N 40W	35N 39W	35N 38W	35N 37W	EBRASTAN 3 35N 36W	-35N 35W	35N 34W	35N 33W	35N 32W	35N 31W	35N,30W	35N 29W	35N 28W	35N 27W	35N 26W
34N 40W	34N 39W	34N,38W	Mertiline 34N 37W	34N 36W	20	34N 34W	GOC Y 34N 33W	NGREZG		tat the second	BELOOD	m		State'llighwa
34N 41W		- An	5		34N 35W			3411.3210	34N 31W	34N 30W	34N 29W	34N 28W 20]	34N 27W Valentine	34N 26W
33N.40W	33N 39W 20	33N 38W	33N 37W	33N 36W	33N 35W	33N 34W	33N 33W	33N 32W-	33N 31W	33N 30W	33N 29W	33N 28W	33N 27W	33N 26W
33N 41W	and an	and the work	A CT				Mr.	16F		Nich	97	The second	2	pine .
32N 40W	32N 39W	32N 38W	32N 37W	32N 36W	32N 35W	32N 34W	32N 33W	32N 32W	32N 31W nuel R. Kelvie nal Forest	32N 30W	32N 29W	32N 28W	32N 27W	32N 26V 20
Sheridan 31N 40M	31N 39W	31N 38W	31N 37W	31N 36W	31N 35W	31N 34W	31N 33W	31N 32W	31N·31W	31N 30W	31N 29W	31N 28W	31N 27W	31N 26W
31N 40W	. }		15			the second secon		and the second	-Merritt Reser		The second	Bird .	Jan	A A
30N 40W 30N 41W	30N 39W	30N, 38W.	30N 37W	30N 36W	30N 35W	30N 34W	30N 33W	30N 32W	Man age ment A 30N 31W	30N 30W	30N 29W	30N 28W	3045 ft 30N 27W	30N 26V
29N 40W	A State of A		Py		den Cree			Boardman Cr	Gordon Scel	A.S.		Valentine Nati.Wildfi Refuge		- Art
29N 40W	29N 39W	29N 38W	29N 37W	29N 36W	29N 35W	29N 34W	29N 33W	29N 32W	29N 31W	29N 30W	29N 29W	29N 28W	29N 27W	29N 26V
28N 40W	28N 39W	28N 38W	28N 37W	28N 36W	28N 35W	28N 34W	28N 33W	man	the for		ALS.		83	
			A free	River			Po Ver	28N 32W	28N 31W	28N 30W	28N 29W	28N 28W	28N 27W	28N 2
27N 40W	27N 39W	27N 38W	27N 37W	27N 36W	27N 35W	27N 34W	27N 33W	27N 32W 97	27N 31W	27N 30W	27N 29W	27N 28W	27N 27W	27N 2
	Ne.	6	D			- FR		H H	1 STA	A A A		me of		T
26N 40W		26N 38W	26N 37W	26N 36W	26N 35W	26N 34W	26N 33W	26N/32W	26N 31W	26N.30W	26N 29W	26N 28W	26N 27W	26N 2
25N 40W	25N/39W-		25N 37W		Zana Z.	25N 34W	25N 33W	SER.			18A		The f	
15			Cherry	38	it is		2511 35W)	Cherry	25N 31W	25N 30W	25N 29W	25N 28W	44	- Jan
.4185 ft	215		15	22					- Mide	die Loup River		The	omas 3083 fi 2979 ft	t
			1			5-0-	2.4		14-1		2ª			





	1 august		~	-	W	ational ildlife efuge		12.52	and the second						1	
1				SOUT	н дакота			3373	rt -						2724 ft	
1	35N 40W	35N 39W	35N 38W	TT	35N 37W	EBRASKA 35N 36W	35N 35W	35N 34W	35N 33W	35N 32W	35N 31W	35N 30W	SOUTH DAKOT	-13-14	S MA	4-10
	34N 40W	25		arg	Viendime	m	As 5		Cocly	Nenzel	LEIDE	AT	Z Groolst	35N 28W	35N 27W	35N 26W
	34N 41W	34N 39W	34N,38W		4N 37W	34N 36W	20 34N 35W	34N 34W	34N 33W	34N 32W	34N 31W	34N 30W	34N 29W	34N 28W	34N 27W	34N 26W
		h f						and the second s	In					20]	Valentine	rara Jilita
	33N 40W	33N 39W 20	33N 38W	33	BN 37W	33N 36W	33N 35W	33N 34W	33N 33W	33N 32W-	33N 31W	33N 30W	33N 29W	33N 28W	33N 27W	33N 26W
Cree	33N 41W	Fil	P Survey r	F				~	Ray	16F	- A-Y	Nicharar	97	The la	2	
	32N 40W	32N 39W	32N 38W	61	32N 37W	32N 36W	32N 35W	32N 34W	32N 33W	32N 32W	32N 31W Tuel R. Kelvie	32N 30W	32N 29W	32N 28W	32N 27W	32N 26V 203
	17-12		7		~	5AC	2	Ple	347	Nation	al Forest	P	J.J.S.	A	- TT	
Sheridan	1	31N 39W	31N 38W		31N 37W	31N 36W	31N 35W	31N 34W	31N 33W	31N 32W	31N-31W	31N 30W	31N 29W	31N 28W	31N 27W	31N 26V
	31N 41W			1	}	100	TE	EBE	and the second	The second	Merritt Reserve Wildlife		The second	Aikali Lake	3045 ft	42
-	30N 40W 30N 41W	30N 39W	30N 38W	S	30N 37W	30N 36W	30N 35W	30N 34W	30N 33W	30N 32W	Management A	30N 30W	30N 29W	Son 28W	30N 27W	30N 264
17	-21-	Lint			Y	S GO	don Creek	5300	rat		Gordon Greek	105	Dads	Valentine Natl Wildlife	Middle Marsh	R
Billys Lake	29N 40W 29N 41W	29N 39W	29N 38W	5	29N 37W	29N 36W	29N 35W	29N 34W	29N 33W	29N 32W	29N 31W	29N 30W	29N 29W AND BED	Refuge 29N 28W	Lake 29N 27W	29N 26W
1	28N 40W	28N 39W			5	15-5	Se St	Ent	Nor	th Love River	E	1-15	429	Lake 1		St
1			28N 38W	t	28N 37W	28N 36W	28N 35W	28N 34W	28N 33W	28N 32W	28N 31W	28N 30W	28N 29W	28N 28W	28N 27W	-28N 2
	27N 40W	27N 39W	2741204	Y				RE	C34		- 22		A A	prof	125	2 F
1	E A			A	27N 37W	27N 36W	27N 35W	27N 34W	27N 33W	27N 32W 97	27N 31W	27N 30W	27N 29W	27N 28W	27N 27W	G 050 27N 2
		26N 39W	26N 38M	1	26N 37W	14A		JE E	DAY	JEZ.	THE	JA YE	A A	TRA T		TA-
5	26N 40W	SPC:	X A		2011 5700	26N 36W	26N 35W	26N 34W	26N 33W	26N 32W	26N 31W	26N 30W	26N 29W	26N.28W	26N 27W	26N 2
10	25N 40W	Moth	er	~	Midd	In France Migdle	Toyo River		Act	EP-C	340 #	TAT P	AL TO			J.K.
Tr.	123	25N 39W	25N 38W	ST.	25N 37W	25N 36W	7	25N 34W	25N 33W	TXI	25N 31W	25N 30W	25N 29W	25N 28W	25N 27W	25N 2
14	573		in the	1	Pi	125	10			Cherry		RE SCHR	H AP	Thom	and a start of the	<u>N</u>
2	.4185 ft	all all		1	12	~~~					Midd	le Loup River		1-1-1	2979 ft	
5	22	- FEE		F	55-		2.2.3.		1				22	1. Trans		
1	S.F. In	et and all of			F 1		1- 1-1-1						1 m			



CHERRY COUNTY, NEBRASKA **COMPREHENSIVE PLAN** WELLHEAD PROJECTION AREAS

#### Legend

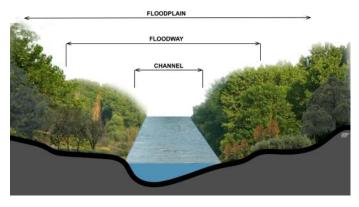


Wellhead Protection Area

Township/Range

- County Boundary
- ∼ US Highway
- State/County Highway
- $\frown$  Local Road




PROJECTION: NE State Plane (Ft.) DATUM: NAD 83 DATE: 07.06.2020

Ν

14 Miles 1 " = 7 miles

**Floodway Fringe** which is that portion of a floodplain that is inundated by floodwaters but is not within a defined floodway. Floodway fringes serve as temporary storage for floodwaters.

#### FIGURE 10.5: FLOODING DIAGRAM



The floodplain also includes the floodway and the flood fringe, which are areas covered by the flood, but which do not experience a strong current.

The floodplain area of greatest significance in terms of state and federal regulation is the 100 year floodplain. This area is defined by the ground elevation in relation to the water elevation experienced during a 100 year flood event. The 100 year floodplain is calculated to be the elevation level of flood water expected to be equaled or exceeded every 100 years on average. In other and more accurate words, the 100 year flood is a 1% flood, meaning it defines a flood that has a 1% chance of being equaled or exceeded in any single year.

Preserving the floodplain and floodway are critical to limiting the level of property damage that can occur as well as the level of damage to life of the occupants of the area. Land when not flooded seems to be harmless, but it is those rare times that threaten life and property that need to be controlled.

All this said, the county of Cherry County as a whole is not mapped for floodplains and floodway. However, Valentine and Cody are in the flood program.

In recent years there have been numerous flooding occurrences in Nebraska and the Midwest. These events have included the Platte River, the Niobrara River (downstream from Cherry County, the Missouri River, and the Mississippi River, as well as their tributaries. Each of these events have caused significant damage to life and property. In order to protect an individuals property there are specific rules and guidelines that need to be followed. Most guidelines are developed for 100 year flooding events. The times the guidelines have not worked are typically referred to a 500 year event for lack of a better term. However, in some cases, due to mother nature and increases in development runoff, the area needed to handle the floodway and floodplain (100 year event) have increased due to the amount and speed of the water reaching the streams and rivers.

#### NATURAL RESOURCES/ENVIRONMENT GOALS AND POLICIES

#### Natural Resource Goal 1

To maintain or improve the primary landscape soil, vegetation and watershed resources in a manner that perpetuates and sustains a diversity of uses while fully supporting the custom, culture, economic stability and viability of Cherry County and our individual citizens.

#### Natural Resource Policies and Strategies

- NR-1.1 Non-agricultural developments should maintain a vegetative cover on the land sufficient to prevent wind and water erosion.
- NR-1.2 Non-agricultural developments should protect wetlands and flood-prone areas.
- NR-1-3 "Good neighbor" standards should be developed for land use changes and set forth in the County zoning regulations as information required in a zoning permit application.

#### Water

#### Water Goal 1

Meet the requirements for water quality contained in the State of Nebraska water quality plan to the extent they can be met while complying with Nebraska constitutional and statutory law as to vested water rights and control of in-stream flow, and to maintain or improve riparian areas and aquatic habitat that represents a range of variability for functioning condition.

#### Water Policies and Strategies

W-1.1 Encourage the use of Best Management Practices (BMP's) for those waters which have been specifically identified and documented as not meeting beneficial use. BMPs include but are not limited to: Prescribed grazing systems, off site water development, red cedar control, livestock salting plans, establishment of riparian

pastures, herding.

- W-1.2 Develop and utilize standardized forms and procedures for all monitoring data related to riparian and aquatic, habitat, condition and trend.
- W-1-3 Develop BMPs for riparian, groundwater and wetland management based on the best available science, balancing the needs of current and future agriculture operation(s). The custom, culture, and economic stability of the County and private property rights and private property interests including investment backed expectations will be protected in the application of all riparian, groundwater and wetland management plans.
- W-1-4 All riparian, ground water and wetland management decisions are best resolved on a site-specific basis.
- W-1.5 Develop management plans for multiple recreation uses in high erosion hazard watersheds, or watersheds where accelerated erosion is occurring, which assure that planning documents and/or other agreements which alter multiple recreation use are formulated through coordination with Cherry County.
- W-1.6 Develop and implement a management plan for wildlife to minimize surface disturbance erosion adversely affecting riparian areas.
- W-1.7 Complete annual reviews and provide documentation and data to Nebraska Department of Natural Resources (NDNR) regarding in-stream flow impact on fish and wildlife habitat, aquatic life, recreation, aesthetic beauty and water quality.
- W-1.8 Provide for the development and maintenance of water systems.

#### Water (surface water and groundwater)

#### Water Goal 2

Protect both the surface water and groundwater that runs through and is under the county.

#### Water Policies and Strategies

- W-2.1 Encourage the private conservation of sensitive areas such as wetlands, wooded areas, waterways (streams, ponds, lakes, rivers, etc.).
- W-2.2 Protect all water supplies and aquifers from development activities that may

affect the quality of water; development must demonstrate a positive or, at least, a neutral impact on groundwater.

- W-2.3 Continue participation in the FEMA National Flood Insurance Program to prevent flood- caused loss of life and property.
- W-2.4 Land use development within the floodplains of the county should be avoided.
- W-2.5 Cherry County encourages soil and water conservation efforts to aid in erosion, sediment, and run-off control where possible.
- W-2.6 Cherry County encourages protection of riparian vegetation from damage that may result from development.
- W-2.7 Cherry County will plan for and positively urge better development of water supply consistent with the statutory and constitutional standards and will work to protect established water rights in accordance with such standards.
- W-2-8 Cherry County opposes the expansion of the federal regulation of wetlands beyond the traditional understanding of navigable w a t e r s , w h i c h m e a n s waters that provide a channel for comme rce and transportation of people and goo ds.
- W-2-9 Any rivers within Cherry County considered "outstandly remarkable areas" under The National Wild and Scenic Rivers Act, 16 U.S.C. §§1271-1287, that have not already been designated, should be released from consideration.
- W-2-10 Productive watersheds must be maintained within the county as essential factors to the preservation of irrigated agriculture.